A functional polymorphism in the prodynorphin gene affects cognitive flexibility and brain activation during reversal learning
نویسندگان
چکیده
Whether the opioid system plays a role in the ability to flexibly adapt behavior is still unclear. We used fMRI to investigate the effect of a nucleotide tandem repeat (68-bp VNTR) functional polymorphism of the prodynorphin (PDYN) gene on cerebral activation during a reversal learning task in which participants had to flexibly adapt stimulus-response associations. Past studies suggested that alleles with 3 or 4 repeats (HH genotype) of this polymorphism are associated with higher levels of dynorphin peptides than alleles with 1 or 2 repeats (LL genotype). On the behavioral level, the HH group made more perseverative errors than the LL group. On the neural level, the HH group demonstrated less engagement of left orbitofrontal cortex (lOFC) and cortico-striatal circuitry, and lower effective connectivity of lOFC with anterior midcingulate cortex and anterior insula/ventrolateral prefrontal cortex during reversal learning and processing negative feedback. This points to a lower ability of the HH genotype to monitor or adapt to changes in reward contingencies. These findings provide first evidence that dynorphins may contribute to individual differences in reversal learning, and that considering the opioid system may shed new light on the neurochemical correlates of decision-making and behavioral regulation.
منابع مشابه
The emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کاملThe emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کاملInverse Effect of Fluoxetine on Medial Prefrontal Cortex Activation During Reward Reversal in ADHD and Autism
Attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) share brain function abnormalities during cognitive flexibility. Serotonin is involved in both disorders, and selective serotonin reuptake inhibitors (SSRIs) can modulate cognitive flexibility and improve behavior in both disorders. Thus, this study investigates shared and disorder-specific brain dysfunctions in ...
متن کاملBrain Functional Connectivity Changes During Learning of Time Discrimination
The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...
متن کاملThe evaluation of mechanism of Effectiveness of Behavioral Activation Therapy (BA) through Cognitive Flexibility and Emotional Flexibility on Symptoms of Women with Major Depressive Disorders
The purpose of this study was to investigate the mechanism of the effect of behavioral activation therapy (BA) through cognitive flexibility and emotional flexibility on the symptoms of women with major depressive disorder. This study was based on the single-subject design. The research sample consisted of five women with major depressive disorder (BDI-II), Beck Anxiety (BAI), Cognitive Flexi...
متن کامل